Fast Tensor Principal Component Analysis via Proximal Alternating Direction Method with Vectorized Technique

نویسندگان

  • Haiyan Fan
  • Gangyao Kuang
  • Linbo Qiao
چکیده

This paper studies the problem of tensor principal component analysis (PCA). Usually the tensor PCA is viewed as a low-rank matrix completion problem via matrix factorization technique, and nuclear norm is used as a convex approximation of the rank operator under mild condition. However, most nuclear norm minimization approaches are based on SVD operations. Given a matrix m n × ∈ X  , the time complexity of SVD operation is ( ) 2 O mn , which brings prohibitive computational complexity in large-scale problems. In this paper, an efficient and scalable algorithm for tensor principal component analysis is proposed which is called Linearized Alternating Direction Method with Vectorized technique for Tensor Principal Component Analysis (LADMVTPCA). Different from traditional matrix factorization methods, LADMVTPCA utilizes the vectorized technique to formulate the tensor as an outer product of vectors, which greatly improves the computational efficacy compared to matrix factorization method. In the experiment part, synthetic tensor data with different orders are used to empirically evaluate the proposed algorithm LADMVTPCA. Results have shown that LADMVTPCA outperforms matrix factorization based method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inexact alternating direction method with SQP regularization for the structured variational inequalities

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

متن کامل

Tensor principal component analysis via convex optimization

This paper is concerned with the computation of the principal components for a general tensor, known as the tensor principal component analysis (PCA) problem. We show that the general tensor PCA problem is reducible to its special case where the tensor in question is supersymmetric with an even degree. In that case, the tensor can be embedded into a symmetric matrix. We prove that if the tensor...

متن کامل

Moving Object Detection by Robust PCA Solved via a Linearized Symmetric Alternating Direction Method

Robust Principal Components Analysis (RPCA) gives a suitable framework to separate moving objects from the background. The background sequence is then modeled by a low rank subspace that can gradually change over time, while the moving objects constitute the correlated sparse outliers. RPCA problem can be exactly solved via convex optimization that minimizes a combination of the nuclear norm an...

متن کامل

Alternating Proximal Gradient Method for Convex Minimization

In this paper, we propose an alternating proximal gradient method that solves convex minimization problems with three or more separable blocks in the objective function. Our method is based on the framework of alternating direction method of multipliers. The main computational effort in each iteration of the proposed method is to compute the proximal mappings of the involved convex functions. T...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017